Comments and Discussions
You don't need to login to post your comment
Comments:
30
Views:
60k
Likes:
120k
votes
Vinay ~ Hyderabad
π India
Given : Rohit and Rahul start at the same point and they each other move in a right angle. They are separated by 80 km after 4 hours.
RahulΓ’β¬β’s speed is 4 kmph less than RohitΓ’β¬β’s.
Let speed of Rahul be x.
Then, Distance covered by Rahul = Speed Γβ Time
\begin{gathered}\begin{aligned} & = 4 \times x \\\\ = & 4 x k m p h \end{aligned}\end{gathered}
=
?
=4Γβx
4xkmph
?
?
& speed of Rohit is 4kmph more than Rahul. Hence,
Rohit covered 4(x + 4)kmph
Now, by Pythagoras theorem,
a^2+b^2+c^2a
2
+b
2
+c
2
whereas a = 4x, b = 4 (x + 4) and c = 80kmph
\begin{gathered}\begin{aligned} ( 4 x ) ^ { 2 } + [ 4 ( x + 4 ) ] ^ { 2 } & = ( 80 ) ^ { 2 } \\\\ 16 x ^ { 2 } + 16 \left( x ^ { 2 } + 8 x + 16 \right) & = 80 \times 80 \\\\ 16 \left( x ^ { 2 } + x ^ { 2 } + 8 x + 16 \right) & = 16 ( 5 ) \times 80 \\\\ \left( 2 x ^ { 2 } + 8 x + 16 \right) & = 400 \end{aligned}\end{gathered}
(4x)
2
+[4(x+4)]
2
16x
2
+16(x
2
+8x+16)
16(x
2
+x
2
+8x+16)
(2x
2
+8x+16)
?
=(80)
2
=80Γβ80
=16(5)Γβ80
=400
?
?
\begin{gathered}\begin{array} { c } { \left( x ^ { 2 } + 4 x + 8 \right) = 200 } \\\\ { x ^ { 2 } + 4 x + 8 - 200 = 0 } \\\\ { x ^ { 2 } + 4 x - 192 = 0 } \\\\ { x ^ { 2 } + 16 x - 12 x - 192 = 0 } \\\\ { x ( x + 16 ) - 12 ( x + 16 ) = 0 } \\\\ { ( x - 12 ) ( x + 16 ) = 0 } \end{array}\end{gathered}
(x
2
+4x+8)=200
x
2
+4x+8-200=0
x
2
+4x-192=0
x
2
+16x-12x-192=0
x(x+16)-12(x+16)=0
(x-12)(x+16)=0
?
?
Hence, x = -16 or x = 12.
Now speed cannot be minus, thus
x = 12 kmph i.e. Speed of Rahul
Speed of Rohit = x + 4 = 12 + 4 = 16 kmph
RahulΓ’β¬β’s speed is 4 kmph less than RohitΓ’β¬β’s.
Let speed of Rahul be x.
Then, Distance covered by Rahul = Speed Γβ Time
\begin{gathered}\begin{aligned} & = 4 \times x \\\\ = & 4 x k m p h \end{aligned}\end{gathered}
=
?
=4Γβx
4xkmph
?
?
& speed of Rohit is 4kmph more than Rahul. Hence,
Rohit covered 4(x + 4)kmph
Now, by Pythagoras theorem,
a^2+b^2+c^2a
2
+b
2
+c
2
whereas a = 4x, b = 4 (x + 4) and c = 80kmph
\begin{gathered}\begin{aligned} ( 4 x ) ^ { 2 } + [ 4 ( x + 4 ) ] ^ { 2 } & = ( 80 ) ^ { 2 } \\\\ 16 x ^ { 2 } + 16 \left( x ^ { 2 } + 8 x + 16 \right) & = 80 \times 80 \\\\ 16 \left( x ^ { 2 } + x ^ { 2 } + 8 x + 16 \right) & = 16 ( 5 ) \times 80 \\\\ \left( 2 x ^ { 2 } + 8 x + 16 \right) & = 400 \end{aligned}\end{gathered}
(4x)
2
+[4(x+4)]
2
16x
2
+16(x
2
+8x+16)
16(x
2
+x
2
+8x+16)
(2x
2
+8x+16)
?
=(80)
2
=80Γβ80
=16(5)Γβ80
=400
?
?
\begin{gathered}\begin{array} { c } { \left( x ^ { 2 } + 4 x + 8 \right) = 200 } \\\\ { x ^ { 2 } + 4 x + 8 - 200 = 0 } \\\\ { x ^ { 2 } + 4 x - 192 = 0 } \\\\ { x ^ { 2 } + 16 x - 12 x - 192 = 0 } \\\\ { x ( x + 16 ) - 12 ( x + 16 ) = 0 } \\\\ { ( x - 12 ) ( x + 16 ) = 0 } \end{array}\end{gathered}
(x
2
+4x+8)=200
x
2
+4x+8-200=0
x
2
+4x-192=0
x
2
+16x-12x-192=0
x(x+16)-12(x+16)=0
(x-12)(x+16)=0
?
?
Hence, x = -16 or x = 12.
Now speed cannot be minus, thus
x = 12 kmph i.e. Speed of Rahul
Speed of Rohit = x + 4 = 12 + 4 = 16 kmph
Was this answer helpful?